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Aerosol measurement challenges

Aerosols present significant measurement challenges because they are a
Mixture of particles in a gas with complex and diverse characteristics.

* Size:10nmto1lum 102 to 10° particles cm3
* Mass: fgtong 1 to 100 ug m3

Shape: all sorts
Composition: OC, EC/OC, Sulfate, Nitrate, Ammonium, Mineral dust, etc...

* Tropospheric Lifetime - ~ 1 week
* Transport distance —
¥ way around the world
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Electron image & element maps particle sample — Los Angeles 2004
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Aerosol impacts

* Warms climate via absorption

e Cools climate via cloud and condensation processes
e Changes surface albedo

» Affects local and global scale weather and air quality

14 ug/m3 loading - Acadia, ME - Out of EPA attainment 886 ug/m3 loading - Beijing, China
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Radiative forcing attributed to aerosols
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Needs of the communities

Workshop on
& AEROSOL

Improved measurements through: ‘ x:;g?tggv
Traceable measurements € . CLIMATE SCIENCE
Standard materials [

Data for materials with known properties

Methods for measurement intercomparisons

Improved instrumentation — specificity and sensitivity ° N

Terminology clarification

Cross disciplinary understanding of aerosols, their
measurement and the underlying chemistry 1 25% 1ab to 1ab variatid

for “standard” aerosol -
nigrosin
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NIST Aerosol projects s
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* Characterize radiative properties of blackand = | /\J\a
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brown carbon systems PG | IVARVA'S
— Develop and apply new optical measurement capabilities °’°2:%& T 1
— Correlate optical properties with chemical composition 0l ﬁ"“ﬁ*“
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Wavelength (nm)

— Develop a transferable aerosol with known optical properties s absorption of soot, brown carbon, and BrC solution

Focused lon-Beam Tomography and
3-D Spatial Modeling

* Microanalysis of heterogeneous aerosols

— Determine shape, composition, & internal structure

— Correlate optical properties based on 3-D spatial models

* Organic aerosol chemistry impacting solar
radiation

— Use a photochemical flow reactor to elucidate key VOC 4
oxidation reactions producing chromophores and particulates %%% e i

— Characterize droplet formation propensity

Atmospheric aerosol processes
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Tools & Expertise

Particle generation
Soot & spray generation
Flow reactor
Conditioning tools

Particle characterization

Size - Differential mobility analyzer

Mass - Aerosol particle mass analyzer
Number - Condensation particle counter

Chemical analysis including 3-D structure and composition

High performance liquid chromatography

Tandem mass spectrometer

Focused ion beam scanning electron microscope with X-ray detection
Transmission electron microscopy

Electron backscatter diffraction

Ozone
(0.8-1.0) pL/L e
LT
Humidified :7:’ Reactor.‘ 7: i HF’LC
. . Air — AR n . v
Optical properties L/ BRERU ﬁ —
Cavity ring down spectrometer Reactant )

Photoacoustic absorption spectrometer

Photochemical Flow Reactor to Study Extensive Oxidation of Organic Compounds
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Holistic understanding of aerosols and
their climate impact

Measurement perspectives for carbonaceous aerosols
Chemical Optical Thermochemical
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